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Abstracl. We consider the electronic momentum distribution in systems displaying spin—
charge separation. In particular, we consider the i-J model in the large-N limit.
Assuming that there is no Bose condensation of holons at low temperatures in one and
two dimensions, we find that the momentum distribution of the electron shows no Migdal
discontinuity in one and two dimensions. In three dimensions, the Migdal discontinuity
prevails as a signature of a Fermi-liquid state due to the presence of a holon condensate.

It was suggested by Anderson [1] that the electronic momentum distribution ny in
strongly correlated Fermi systems such as the hole-doped cuprates has no Migdal
discontinuity {2} and should be described via the theory of the Luttinger liquid [3].
This conjecture has been demonstrated in one dimension where exact solutions have
been found for the Hubbard model [4] and the supersymmetric point (J = 2t)
of the ¢-J model [5]. The separation of the spin and charge degrees of freedom
is a commmon feature in these models and is indeed generic to a whole class of
Luttinger liquids. How is the momentum distribution affected by this phenomenon?
In the absence of exact results for higher dimensions, it is interesting to calculate
the momentum distribution in theoretical models where spin—charge separation is
expected. Indeed, such a model has been studied in a previous paper by one of us
[6]: in the large-N limit of the ¢—J model at J = 2¢ in two dimensions, the spin
and charge are not confined to form an electronic quasiparticle since the attraction
between them decays with their separation as 1/r* At this special large-N, J = 2
limit, the bosonic holons experience no direct interactions and so they undergo Bose—
Einstein condensation at sufficiently low temperatures with a free-particle spectrum—
€, = k*/2m. To discuss spin—charge separation, we write the electronic creation
operator as

Ei:v = ,yu go(

where y° annihilates a charged holon and 7 creates a neutral spinon with spin o =1
or |. Bose condensation of the holons, ie. (yy) = /5, # 0, implies that

& — puen? ,gor
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(where 9 is a phase field) so that the clectronic momentum distribution would foliow
that of the spinon. In terms of the electronic spectral function, this implies a
quasiparticle pole (in addition to an incoherent background due to real spinon-
holon production). Thus a Migdal discontinuity is expected. Similarly, we expect this
Fermi-liquid property to survive in high dimensions where there is a finite degeneracy
temperature for the bosonic holons [7].

However, in one and two dimensions, the long-wavelength fluctuations of the
phase ¢ destroy the holon condensate. In this letter, we use a large-N expansion
to discuss the electronic momentum distribution in one and two dimensions for the
particular cases when there is no Bose condensation—at zero temperature in one
dimension and at finite temperatures in two dimensions below the Kosterlitz—Thouless
transition [8] for the holons. We find that there is no Migdal discontinuity in the
absence of Bose-Einstein condensation.

Consider first the t-J model away from the supersymmetric point in two
dimensions. The imaginary-time Lagrangian reads

L= Y [§°0.v°+3JD,4°D,y°]
a=HT,]

—(t— %J) El [gayﬂﬁoya + aﬁ(gayﬂ)ap(guya)] M
o=T,

with the constraint

Z iyt = 1.

e=b,1,]
The gauge-covariant derivative D, is defined as
D,y* =(8, +iA, )"

Ay =i Z ¥ 8,v°
a=0,1,1

@)

reflecting the invariance of the ¢-J Hamiltonian with respect to phase transformations
in the bosonic (¢”) and fermionic (y*) slaves. The identification of A, is enforced
by the field equation: L£/8A, = 0, similarly to in the treatment of the bosonic non-
linear o-model [9]. We may use the number constraint to eliminate the fermionic
variables in the second term (which represents contact interaction) in the above
Lagrangian. We then find an explicit repulsion term with strength o (2t — J)
between the bosonic slaves when 2¢ > J. From the conventional theory of
interacting Bose systems {10], we expect this to modify the behaviour of the low-
lying bosonic excitations—from the free-particle spectrum at 2t = J to a collective
branch 2, = c|k| where c can be identified as the sound velocity. Off-diagonal long-
range order [11] and hence holon condensation is not expected to survive at finite
temperatures in the presence of repulsive interactions. Instead, a power-law decay in
the holon correlation function GB(z) is expected. (For J > 2t, the bosonic slaves
attract each other and, indced, there is phase separation of the holes from the spins
at sufficiently large J/t [12].) We will now consider how this affects the electronic
momentum distribution of the system in the large- N limit.
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In our large- NV extension of the model, we have NV species of holons and spinons:
y*® — y%% (» = 1,..., N). The number constraint on each site is now relaxed to

N

> geyr =

r=1la=01,4

As we are only considering a long-wavelength expansion, we neglect the derivative
interaction in equation (1). The remaining term in the interaction is re-scaled and
becomes

DN ) @)

' a=T,1

At large N, the effect of the fluctuations in the gauge field is O(1/N) [13] and
so we will consider only its saddle-point configuration in the large-/V limit. The
leading contribution to the electronic Green's function is then the product of the
spinon-antiholon Green’s functions:

G alziz, ) = — (V1) (2)F(2)) ~ G¥ (@12, T12)G (231, Ta1) B0 4

We will consider the low-temperature regime where the spinons can be described
as a degenerate Fermi gas and the holons possess power-law phase coherence in a
Kosterlitz—Thouless phase: 0 < T <& Typ <« ep/ kg where T is the boson coherence
temperature which we identify with the Kosterlitz-Thouless temperature and ¢ is the
spinon Fermi energy. We will take

;2 -1
F_{:,__{_*~ _
g = [lw (sz EF)]

and neglect the thermal smearing of the spinon Fermi surface which only occurs over
a small momentum range near the Fermi level for kgT /e < 1. We will also adopt
the Kosterlitz—Thouless model for our holons and use the conventional expression
[14): GB(z, ) ~ pge~=7) with

2 2 L e —w T
Q(a:,’r):ch .[ d<k T Z I—cos(k-2—w,T) )

Py Jigen (27) wh + 2k

n=—00

where g, is the number density of the condensate (proportional to the fraction of
holes &),

c = {(2t — J)py/ my)'/?

is the sound velocity and p, is the superfiuid density defined as the component
that does not carry any momentum in motion. (A is an ultraviolet cut-off and
w, = 27 nT are the Matsubara frequencies.) This assumes a phonon-like spectrum
which is generic to repulsive Bose systems at energies below an interaction scaie
~ (t - %J )p- (At shorter wavelengths and higher energies, we expect to see free-
particle behaviour.)
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The momentum distribution for the physical electrons is given by
n, = fdzm > G (x,—0) e =, (6}
o
In the temperature range considered,

ki J,(kpz)
Fro —0y= EX1\2F™]
¢ (=, ~0) 2r kg2

B 1 wT)
G (3,-{-0)’“1}0 ';

where [ o« (¢/T), = = |&| > | and 9(T) = mgT/2mp, [14]. If we take the
Kosterlitz-Thouless [8] model for our bosons, the transition to the totally disordered
state occurs when n approaches 1/4 from below. The momentum distribution is now
given by

M

ny = py(kpl)” /uw j—,f' Ji(s)Jy(ks /kg). (8)

This integral is a representation of a hypergeometric function F(e,b¢; z) in the
variable z = & = |k|/kg. Note that the series representation of the hypergeometric
function about « = 0 has unit radius of convergence and we have to be careful
in examining the behaviour of n, near the Fermi surface. For 0 < « < 1 (and
-1 <5 <2)[15]

I'(1—n/2)

TT(A+ n2) 0 L= /2=nl2, 1,£%). ©)

ny, = pyl kpl)?

The behaviour of n;, as x — 1~ can be mapped onto its series expansion around
x = 0 via the Kummer transformations [16]. Similarly, the distribution for &k > kg is
given by '

T(1-1n/2 1
nk=51%f%5'(1—??/2,1—71/212,;5)- (10)

In this case, in order to determine the behaviour as x — 1%, two consecutive Kummer
transformations are needed to map the argument into the domain where the power
series representation is valid. We find that the momentum distribution at the Fermi
level is given by

'{imI'(1—n/2

and this is approached symmetrically from above and below as a power law in (1-£2):

nk—nh:-’;—“(%) sga(1 — x)|T(=n)|sin(wn/2)|1 - 2], (12)
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The slope of n, diverges at the Fermi level, resembling one-dimensional Luttinger
systems. We expect to see this asymptotic behaviour for states whose energies are
less than the interaction energy scale (¢ — 1J)p, from the Fermi level. This is quite
different from a distribution with a Migdal discontinuity which would be smooth over
an energy scale of kgT only.

One can also calculate the specific heat of our model by integrating out the
fermionic spinons and the Gaussian fiuctuations in the holon phase. This gives an
effective action for the O(1/N) Auctuations of the gauge fields from which the free
energy can be computed. The spinon contribution to the specific heat has linear
temperature dependence while the holon contribution is proportional to 72 in two
dimensions [17].

Let us now consider the case in one dimension at T" = 0. Holon condensation
should again be absent. The asymptotic behaviour of the holon Green’s function is
[14]

Gpl 2, +0) ~ plz|™” (13)

where 4 = mgc/27p for a system with total boson density p and sound veiocity e.
In this case [15],

2 ds
n, = ?”(kFE)vj: e sin s cos(]x)s). (14)
That is,
ny = (k€)LD p (1 - ) 114 7

x sgn(1+ ) + |1 - «|"sgn(1— )]. (15)

Again there is no Migdal discontinuity in the absence of Bose condensation. A
power law in the momentum distribution is also found in the exact solution of
the N = 1 ¢—J model at the supersymmetric point [5]. In our heuristic large-
N model, the holons behave as hard-core bosons at low densities and the sound
velocity ¢ ~ wp/myg so that y — 1/2 [18] (although we expect gauge fluctuations to
modify this to approach the exact value of 1/8 at the supersymmetric point.)

In summary, we have calculated the momentum distribution for the physical
electron in a large-N expansion. We find that the Migdal discontinuity is absent
at low dimensions due to the infra-red divergence from the fluctuations of the holon
phase. In contrast, holon condensation in three dimensions implies that the jump in
the momentum distribution survives in agreement with our intuition.

One of us (DKKL) wishes to acknowledge the support of SERC grant GR/G02727.
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