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Abhlrael. We consider the electronic momentum distribution in systems displaying spin- 
charge separation. In panicular, we consider the t-3 model in the large-N limit. 
Assuming that there is no Bose condensation 01 holons at low temperatures in one and 
WO dimensions, we find lhal the momenlum distribution of the electron shows no Migdal 
discontinuily in one and WO dimensions. In three dimensions, the Migdal discontinuity 
prevails as a signaluro of a Fermi-liquid slate due to the presence of a holon condensate. 

It was suggested by Anderson [l] that the electronic momentum distribution nk in 
strongly correlated Fermi systems such as the hole-doped cuprates has no Migdal 
discontinuity [2] and should be described via the theory of the Luttinger liquid [3]. 
This conjecture has been demonstrated in one dimension where exact solutions have 
been found for the Hubbard model [4] and the supersymmetric point (J = 2 t )  
of the t-J model [5 ] .  The separation of the spin and charge degrees of freedom 
is a common feature in these models and is indeed generic to a whole class of 
Luttinger liquids. How is the momentum distribution affected by this phenomenon? 
In the absence of exact results for higher dimensions, it is interesting to calculate 
the momentum distribution in theoretical models where spin-charge separation is 
expected. Indeed, such a model has been studied in a previous paper by one of us 
[6]: in the large-N limit of the t-J model at J = 2t in two dimensions, the spin 
and charge are not confined to form an electronic quasiparticle since the attraction 
between them decays with their separation as l/r4. At this special large-N, J = 2t 
limit, the bosonic holons experience no direct interactions and so they undergo Bose- 
Einstein condensation at sufficiently low temperatures with a freeparticle spectrum- 
ek = k2/2m. 'RI discuss spin-charge separation, we write the electronic creation 
operator as 

p = yoGe 

where y" annihilates a charged holon and 
or 1. Bose condensation of the holons, i.e. (yu) = Jis, # 0, implies that 

creates a neutral spinon with spin a =T 

E -  + JijueiB~" 
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(where 8 is a phase field) so that the electronic momentum distribution would follow 
that of the spinon. In terms of the electronic spectral function, this implies a 
quasiparticle pole (in addition to an incoherent background due to real spinon- 
holon production). Thus a Migdal discontinuity is expected. Similarly, we expect this 
Fermi-liquid property to sutvive in high dimensions where there is a finite degeneracy 
temperature for the bosonic holons 171. 

However, in one and two dimensions, the long-wavelength fluctuations of the 
phase 0 destroy the holon condensate. In this letter, we use a large-N expansion 
to discuss the electronic momentum distribution in one and two dimensions for the 
particular cases when there is no Bose condensation-at zero temperature in one 
dimension and at finite temperatures in two dimensions below the Kosterlitz-Thouless 
transition [S] for the holons. We find that there is no Migdal discontinuity in the 
absence of BoseEmstein condensation. 

Consider first the i-J model away from the supersymmetric point in two 
dimensions. The imaginary-time Lagrangian reads 

with the constraint 

The gauge-covariant derivative D, is defined as 

D,y" = (a, + iA,)ya 

A, = -i aaa B ya 
a=U,t,l 

reflecting the invariance of the t-J Hamiltonian with respect to phase transformations 
in the bosonic (yo) and fermionic (y") slaves. The identification of A,, is enforced 
by the field equation: B,C/BA,, = 0, similarly to in the treatment of the bosonic non- 
linear 0-model 191. We may use the number constraint to eliminate the fermionic 
variables in the second term (which represents contact interaction) in the above 
Lagrangian. We then find an explicit repulsion term with strength cx (21 - J) 
between the bosonic slaves when 2t > J. From the conventional theory of 
interacting Bose systems [lo], we expect this to modify the behaviour of the low- 
lying bosonic excitations-from the free-particle spectrum at 2t = J to a collective 
branch Cl, = clkl where c can be identified as the sound velocity. Offdiagonal long- 
range order Ill] and hence holon condensation is not expected to sutvive at finite 
temperatures in the presence of repulsive interactions. Instead, a power-law decay in 
the holon correlation function GB(z) is expected. (For J > 2t ,  the bosonic slaves 
attract each other and, indeed, there is phase separation of the holes from the spins 
at sufficiently large J / t  [12].) We will now consider how this affects the electronic 
momentum distribution of the system in the large-N limit. 
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In our large-N extension of the model, we have N species of holons and spinons: 
yo,* -t y:" ( v  = 1,. . . , N). The number constraint on each site is now relaxed to 

N 

%Y: = N .  
r=la=O,T,l 

As we are only considering a long-wavelength expansion, we neglect the derivative 
interaction in equation (1). The remaining term in the interaction is re-scaled and 
becomes 

At large N, the effect of the fluctuations in the gauge field is 0 ( 1 / N )  1131 and 
so we will consider only its saddle-point configuration in the large-N limit. The 
leading contribution to the electronic Green's function is then the product of the 
spinon-antiholon Green's functions: 

8&(zi23712) = -(Y"(l)Bu(l)Ys(2)~"(2)) ,., EF(zi2,  7 i2 )GB(z2 i ,  721)6@. (4) 

We will consider the low-temperature regime where the spinons can be described 
as a degenerate Fermi gas and the holons possess power-law phase coherence in a 
Kosterlitz-Thouless phase: 0 < T Tm Q e,/k, where Tm is the boson coherence 
temperature which we identily with the Kosterlitz-Thouless temperature and eF is the 
spinon Fermi energy. We will take 

and neglect the thermal smearing of the spinon Fermi surface which only occurs over 
a small momentum range near the Fermi level for kBT/cF < 1. We will also adopt 
the Kosterlitz-Thouless model for our holons and use the conventional expression 
[14]: GB(z,.) - p,e-Q("yr) with 

where pu is the number density of the condensate (proportional to the fraction of 
holes 6), 

c N I(2t - J ) p o / m B ] 1 / 2  

is the sound velocity and pr is the superfluid density defined as the component 
that does not a r t y  any momentum in motion. (A is an ultraviolet cut-off and 
w,, = 2nnT are the Matsubara frequencies.) This assumes a phonon-like specuum 
which is generic to repulsive Bose systems at energies below an interaction scale - ( t  - $J)pu. (At shorter wavelengths and higher energies, we expect to see free- 
particle behaviour.) 
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The momentum distribution for the physical electrons is given by 

nk = /d 'x~E&(z,-O)e-" '" .  
0 

In the temperature range considered, 

where 1 a ( c / T ) ,  3: = 121 > 1 and q(T)  = mBT/27rp, [14]. If we take the 
Kosterlitz-Thouless [SI model for our bosons, the transition to the totally disordered 
state occurs when q approaches 1/4 from below. The momentum distribution is now 
given by 

This integral is a representation of a hypergeometric function F(a,6;c; z )  in the 
variable z = IC = Ikl/k,. Note that the series representation of the hypergeometric 
function about K = 0 has unit radius of convergence and we have to be careful 
in examining the behaviour of nk near the Fermi surface. For 0 < K < 1 (and 
-1 < II < 2) [IS] 

The behaviour of nb as n -t 1- can be mapped onto its series expansion around 
n = 0 via the Kummer transformations [16]. Similarly, the distribution for k > kF is 
given by 

In this case, in order to determine the behaviour as n -t I+, two consecutive Kummer 
transformations are needed to map the argument into the domain where the power 
series representation is valid. We find that the momentum distribution at the Fermi 
level is given by 

and this is approached symmetrically from above and below as a power law in (1- K*): 
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The slope of nk diverges at the Fermi level, resembling one-dimensional Luttinger 
systems. We expect to see this asymptotic behaviour for states whose energies are 
less than the interaction energy scale (t - & J ) p ,  from the Fermi level. This is quite 
different from a distribution with a Migdal discontinuity which would be smooth over 
an energy scale of k,T only. 

One can also calculate the specific heat of our model by integrating out the 
fermionic spinons and the Gaussian Ructuations in the holon phase. This gives an 
effective action for the 0 ( 1 / N )  fluctuations of the gauge fields from which the free 
energy can be computed. The spinon contribution to the specific heat has linear 
temperature dependence while the holon contribution is proportional to T2 in two 
dimensions 1171. 

Let us now consider the case in one dimension at T = 0. Holon condensation 
should again be absent. The asymptotic behaviour of the holon Green's function is 
1141 

+o) (13) 

where y = mBc/2rrp for a system with total boson density p and sound velocity c. 
In this case [15], 

That is, 

(15) 

Again there is no Migdal discontinuity in the absence of Bose condensation. A 
power law in the momentum distribution is also found in the exact solution of 
the N = 1 t-J model at the supersynmetric point 151. In our heuristic large- 
N model, the holons behave as hard-core bosons at low densities and the sound 
velocity c - r p / m B  so that y - 1/2 [IS] (although we expect gauge fluctuations to 
modify this to approach the exact value of 1/8 at the supersymmetric point.) 

In summary, we have calculated the momentum distribution for the physical 
electron in a large-N expansion. We lind that the Migdal discontinuity is absent 
at low dimensions due to the infra-red divergence from the fluctuations of the holon 
phase. In contrast, holon condensation in three dimensions implies that the jump in 
the momentum distribution survives in agreement with our intuition. 

One of us (DKKL) wishes to acknowledge the support of SERC grant GWG02727. 
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